Konstrukce mobilního robota schopného pohybu ve venkovním prostředí

The Outdoor Mobile Robot Design

Autor: Adam Heinrich
Škola: Mendelovo gymnázium, Opava, přispěvková organizace
Studijní obor: Sexta, osmileté gymnázium
Konzultant: Ing. Magdalena Chmelařová, Ph. D.

Opava, 2009
Prohlášení

Prohlašuji, že jsem svou práci vypracoval samostatně a použil jsem pouze podklady uvedené v přiloženém seznamu.

V dne Podpis:

Adam Heinrich
www.adamh.cz
Poděkování

Děkuji Ing. Magdaleně Chmelařové, Ph. D., za obětavou pomoc, kterou mi během práce poskytla.
Anotace

Práce popisuje konstrukci mobilního robota pro pohyb ve venkovním prostředí a pohyb po předem zadané trase, postaveného na podvozku závodního RC auta a žízeného poměrně výkonným počítačem s operačním systémem Linux. Řídící počítač umožňuje jak dálkové řízení pomocí rozhraní WLAN, tak i zpracování algoritmů pro autonomní chování.

Klíčová slova: Mobilní robot, Robotika, Autonomní chování

Abstract

This document describes the design of outdoor mobile robot, based on RC car chassis and it's aim is to be able to navigate of pre-specified route. Main computer with operating system Linux allows remote control via WLAN or running autonomous algorithms.

Keywords: Mobile robot, Robotics, Autonomous behavior
Obsah

1. ÚVOD ... 6

2. KONSTRUKCE MOBILNÍHO ROBOTA... 7
 2.1. Motivace.. 7
 2.2. Hlavní koncepce.. 9
 2.3. Blokové schéma.. 10
 2.4. Napájecí subsytem.. 11
 2.5. Pohonný subsytem... 11
 2.6. Řídící systém... 12
 2.7. Popis dalších modulů.. 15
 2.7.1. Modul řízení serv.. 15
 2.7.2. Modul analogových senzorů.. 16
 2.7.3. Infračervený dálkoměr GP2D120... 17
 2.7.4. Ultrazvukový dálkoměr SRF02... 18
 2.7.5. Elektronický kompas CMPS03.. 19
 2.7.6. Inkrementální snímač otáček (enkodér)... 20
 2.7.7. Ostatní moduly.. 21

3. PROGRAMOVÁNÍ .. 22

4. ZÁVĚR ... 23
 4.1. Další vylepšení.. 24
 4.1.1. Nová koncepce... 25

5. VYSVĚTLENÍ POUŽITÝCH ZKRATEK A TERMÍNŮ... 26

6. SEZNAM POUŽITÉ LITERATURE.. 27
1. Úvod

Mobilní robotika je poměrně rozsáhlým odvětvím robotechniky zahrnující informatiku, elektrotechniku, mechatroniku, fyziku, matematiku, mechaniku a mnohé další obory. Existuje mnoho způsobů konstrukce mobilního robota. Může to být klasický humanoid známý z televizních večerníčků, autonomní vysokozdvižný vozík operující ve skladech, autonomní vysavač, sekačka nebo průzkumný dálkově ovládaný robot, který je nasazen v prostředí člověku nebezpečném. Z hlediska řízení můžeme mobilní roboty rozdělit na dálkově řízené a autonomní, tedy ty kteří jsou schopni sami se rozhodovat. Rozhodl jsem se zabývat se stavbou autonomního robota, který by byl schopen pohybu ve venkovním prostředí, vyhýbání se překážkám, nebo projetí předem zadané trasy.
Konstrukce mobilního robota určeného pro pohyb ve venkovním prostředí

2. Konstrukce mobilního robota

2.1. Motivace

Hlavní motivací pro stavbu mobilního robota byla soutěž Robotour\(^1\), ve které mají autonomní roboti za úkol projet trasu podle předem dané posloupnosti úseků a křižovatek. Hodnotí se čas, největším úspěchem ale je, pokud se trasu podaří zdolat celou. V poslední době přibyla možnost získání bodů za transport nákladů, tato skutečnost je ale nepodstatná. Pro podobný typ soutěže je ideální podvozek s Ackermanovým způsobem řízení (“auto”) \([\text{KÁ07}]\).

\[\text{Obrázek 1: Ackermanův způsob řízení [KÁ07]}\]

Konstrukce mobilního robota určeného pro pohyb ve venkovním prostředí

Alternativou k Ackermanovu řízení je řízení diferenciální (styl „tank“). Jeho výhodou oproti Ackermanovu řízení je vyšší manévrovatelnost (diferenciální podvozek se může otočit na velice malém prostoru, často i na místě) a jednodušší řízení, nevýhodou nižší průchodnost terénem a ztráty spojené se zatáčením – to je řešeno smykem.

Dalším cílem bylo sestavit robota, který by navazoval na robota předchozího, postaveného na podvozku závodního RC auta. Byl řízen mobilním telefonem (pomoci sériového potu telefonu a programu v jazyce Java), později bylo jeho řízení předěláno na upravený router. Měl se zúčastnit soutěže Eurobot 2008, což je soutěž mobilních robotů na hřišti o rozměrech 2x3 metry. Jeho úkolem bylo vybírat míčky z podavačů a dostat je do zásobníku, který představoval chladící box pro vzorky přivezené z Marsu. Pro zjištění polohy byla použita optická myš (s protokolem PS/2). Robota se bohužel nepodařilo dokončit včas, mimo jiné i kvůli ne zcela vyhovující konstrukci. Více se o tomto robotovi můžete dočíst na webu.

Obrázek 2: Pohled na předchozí verzi robota

Konstrukce mobilního robota určeného pro pohyb ve venkovním prostředí

2.2. Hlavní koncepce

Robot je postaven na podvozku závodního RC auta v měřítku 1: 10 (délka přibližně 37 cm, šířka 20 cm), který poskytuje kvalitní základnu a dostatek prostoru pro umístění elektroniky a senzorů. O řízení se stará počítač s operačním systémem Linux, ke kterému jsou přes sběrnici I2C připojeny senzory a efektory. Většina elektroniky je uložena v polopřehrarně plastové krabici s otevíracím víkem, které dominuje znakový LCD displej s několika tlačítky, sloužícími ke styku s obsluhou (výběr a spuštění programu, test senzorů atd.). Sledování stavu senzorů a dálkové řízení je díky síti WiFi a webovému rozhraní možné jak z přenosného počítače, tak i z mobilního telefonu nebo PDA.

Vzhledem k tomu, že úkolem robota je autonomní rozhodování, je toto rozhraní použito pouze k ladění a je možné jej kdykoliv odpojit a šetřit tak baterie. Veškeré rozhodování pak probíhá uvnitř, v řídícím počítači.
2.3. Blokové schéma

Na následujícím obrázku je znázorněno blokové schéma robota. Usnadňuje orientaci v jeho hlavních součástech (subsystémech).

Obrázek 4: Blokové schéma nejdůležitějších součástí robota.
2.4. Napájecí subsystém

O napájení veškeré elektroniky se stará šestičlánkový akumulátorový pack, jehož napětí se pohybuje kolem 8 V. Použité baterie (kolem 3,3 Ah) poskytují umožňují dostatečně dlouhou provozní dobu. O hlídání stavu baterie se stará panelový voltmeter připevněný pod víkem krabice. Je to velice užitečné zařízení, které pomáhá předejít zničení drahých baterií. Během ladění algoritmů, kdy je zbytečné baterie vybíjet, je možné místo baterie použít síťový napájecí zdroj 8-12 V.

2.5. Pohonný subsystém

Hlavním pohonem robota je modelářský elektromotor připojený na převodovku v podvozku. Podvozek disponuje náhonem na všechna čtyři kola, odpružením a diferenciálem, což výrazně zlepšuje chování v zatáčkách a zjednodušuje odometrii (měření pohybu – popsáno níže). Motor je řízen pomocí pulzně-šířkové modulace (PWM) modelářským regulátorem otáček. To znamená, že rychlost a směr otáčení motoru závisí na délce řídícího pulzu. Modelářský regulátor otáček je napájen přímo z akumulátoru a vytváří napájení 5 V další elektroniku – slouží tedy i jako napájecí zdroj. O zatáčení se stará modelářský servomotor [WIN05]. Servomotor je motor v plastovém obalu, ve kterém se skrývá ještě převodovka, řídící elektronika a potenciometr. Díky potenciometru, který řídící elektronice poskytuje zpětnou vazbu s informací o poloze výstupní hřídele, lze nastavit přesné natočení výstupní osy, a to pomocí PWM (stejným systémem je řízen i modelářský regulátor otáček). Servo vyžaduje napájecí napětí kolem 5 V.
2.6. Řídící systém

Mozkem robota je upravený router Edimax BR-6104KP [BEZ06], který přes svou relativně nízkou cenu nabízí pro řízení robota velký výkon a disponuje rozhraním LAN, USB host, dvěma sériovými porty (UART) a univerzálními vstupně/výstupními porty.

Úprava spočívala v otevření routeru, vyvedení sériového portu, nahrání nového firmware do procesoru a odpájení LED diod. LED diody jsou totiž přímo spojeny s procesorem a lze je využít například pro připojení tlačítek nebo sběrnice I2C (popsáno níže).

Upravený firmware obsahuje operační systém Linux portovaný pro architekturu MIPS s jádrem verze 2.4. všechny důležité soubory, které je třeba často měnit, jsou uloženy na USB flash disku zformátovaném na souborový systém ext2. Díky WiFi AP (přístupový bod) je možné se k počítači připojit bezdrátově, pracovat pomocí telnetu nebo SSH v textovém režimu operačního systému („příkazová řádka“), upravovat programy pomocí FTP nebo robota dálkově ovládat.

Obrázek 7: Pohled na upravený router (ještě bez odpájených LED diod)
Konstrukce mobilního robota určeného pro pohyb ve venkovním prostředí

Uživatelské rozhraní je zrealizováno pomocí webového rozhraní za pomoci technologie AJAX, která umožňuje tvorbu uživatelsky přívětivějších webových aplikací. Robot tak může být řízen pomocí libovolného zařízení s WLAN – notebook, PDA, mobilní telefon. Webové rozhraní lze využít i jako prostředek pro sledování stavu senzorů a interpretaci naměřených dat (kreslení map apod.).

Řídící počítač komunikuje s ostatními moduly pomocí sběrnice I2C [WIK09]. Rozhraní tvoří dvě linky, datová (SDA) a hodinová (SCL) a komunikace probíhá v běžných úrovních TTL. Touto sběrnicí disponuje velká část běžně dostupných mikrokontrolérů, integrovaných obvodů a senzorických modulů pro robotiku, což byl hlavní důvod jejího použití. Sběrnice zajišťuje komunikaci master-slave, pro adresu modulu je vyhrazen 1 byte. Na jedné sběrnici tedy může být připojeno celkem až 127 modulů. Implementace sběrnice na upraveném routeru je popsána na [GRA07]. Spočívá v instalaci ovladače, který ze dvou vstupně/výstupních linek procesoru udělá datové linky SDA a SCL. Vstupně/výstupné piny jsou na desce routeru fyzicky přístupné po odpájení LED diod.

Styk s obsluhou je zajištěn pomocí modulu 16x2 znakového LCD displeje se sériovým rozhraním SIC1602AYPLEB20 [SNA06]. Ten je připojen na sériový port řídícího počítače. Pro bezproblémové fungování bylo nutné použít invertor 7404, jelikož displej pracuje s invertovanou TTL polaritou (logické 1 odpovídá 0 V, logické 0 pak 5 V). Jednoduché menu robota je zrealizováno za pomoci tří tlačítek připojených přímo ke vstupně/výstupním pinům mikrokontroléru řídícího počítače.
Konstrukce mobilního robota určeného pro pohyb ve venkovním prostředí

Nabídka menu kromě výběru, spouštění a ukončování programů (umělá inteligence, testování modulů, diagnostika) umožňuje také „čisté vypnutí“ řídícího počítače. Při „tvrdém“ vypnutí odpojením napájení totiž hrozí poškození souborového systému na USB disku (u počítačů PC se také nedoporučuje vypínání odpojením kabelu ze zásuvky).

Router původně vyžadoval napájení trafem 12V/1A. Vzhledem k tomu, že je robot bateriově poháněný a napětí na palubě se pohybuje kolem 8V, jsem byl nucen systém napájení upravit. Z plošného spoje a dokumentace obvodů jsem zjistil, že router z napájení 12V/1A vytváří dvě větve, 3,3 V pro integrované obvody (CMOS logika) a 5 V větev použitou pouze pro napájení USB zařízení.

Speciálně pro router byl tedy z obvodů LF33 [ST08] (3V3/1A lowdrop stabilizátor) sestaven napájecí zdroj. Experimentem bylo zjištěno, že ideální je zapojit tyto obvody paralelně a s chladičem. Při použití pouze jednoho obvodu se zdroj přehřál a teplotní ochrana obvodů způsobila přerušení napětí (nehledě na to, že propálil díru do krabice), což je selhání poměrně fatální.

![Obrázek 9: Napájecí zdroj 3,3 V s obvody LF33 [ST08]](image-url)
2.7. Popis dalších modulů

2.7.1. Modul řízení serv

Modul tvoří deska s relativně levným a výkonným jednočipovým mikrokontrolérem ATMega8 [ATM07] taktovaným na 8 MHz. Je připojen ke sběrnici I2C v režimu slave a stará se o řízení serv, regulátor otáček elektromotoru pomocí PWM a počítání tiků z inkrementálního snímače otáček (popsán níže).

Signál pro řízení serv je generován přerušením časovače mikrokontroléru. K signalizaci stavu modulu je použita červená LED dioda.

Obrázek II: Původní podoba modulu řízení serv
Modul analogových senzorů

Srdce modulu analogových senzorů tvoří jednočip ATmega8 [ATM07]. Pomocí vnitřního A/D převodníku převádí výstupní napětí senzorů do číselné podoby, jako reference je použito napájení desky 5 V. Rozhraním I2C je hodnota přenášena v požadovaných jednotkách (například centimetry). Základ tvoří deska ATmega8board vlastní konstrukce, postavená na univerzální (laboratorní) desce plošných spojů s předvrtanými děrami v rastru 2,54 mm. Tato metoda je použita u většiny modulů vlastní konstrukce v robotovi. Návrh desky je vytvořen v programu Eagle a je volně dostupný na webu4. Aktuálně je k modulu připojen infračervený měřič vzdálenosti GP2D120 a bzučák (popsáno níže).

Obrázek 12: Hotový modul analogových senzorů

Obrázek 13: Motiv DPS pro ATmega8board

4 ATmega8board – <http://knowhow.adamh.cz/cs: atmega8board>
Konstrukce mobilního robota určeného pro pohyb ve venkovním prostředí

2.7.3. Infračervený dálkoměr GP2D120

GP2D120 je infračervený dálkoměr vyráběný firmou Sharp. Pracuje na principu odrazu infračerveného záření a triangulace a je schopen měřit vzdálenost od 4 do 30 cm (experimentálně byla zjištěna možnost měření vzdálenosti nepatrně větší). Naměřenou hodnotu převádí na výstupní napětí, jehož závislost na vzdálenosti lze vidět na následujícím grafu [CAR06]:

![Obrázek 14: Sharp GP2D120](image)

![Obrázek 15: Graf závislosti napětí na vzdálenosti [CAR06]](image)

Pro získání hodnoty vzdálenosti v centimetrech byla použita tabulka uvedena v [KRY08]. Dálkoměr je připevněn v přední části robota na mikroservu, které umožňuje jeho libovolné natočení v rozsahu 180°. To lze využít k zjištění informace o poloze překážky. Díky malé minimální vzdálenosti měření (4 cm) doplňuje ultrazvukový dálkoměr SRF02 (popsaný níže) s minimální vzdáleností k překážce 15 cm.

<table>
<thead>
<tr>
<th>Tabulka 1: Vlastnosti senzoru GP2D120 [KRY08]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Napájecí napětí</td>
</tr>
<tr>
<td>Výstupní napětí</td>
</tr>
<tr>
<td>Rozsah měření</td>
</tr>
</tbody>
</table>
Konstrukce mobilního robota určeného pro pohyb ve venkovním prostředí

2.7.4. Ultrazvukový dálkoměr SRF02

Ultrazvukový dálkoměr (sonar), je zařízení, které měří vzdálenost k překážce pomocí vysílání ultrazvukových vln (podobně jako netopýr). Výhodou je, že kvalita odrazu není závislá na barvě povrchu jako u infračervených senzorů a senzor je tedy spolehlivější, nevýhodou pak možnost odrazu signálu pod tupým úhlem směrem od překážky a následné znehodnocení měření. Použitý modul [DEV08] disporuje rozhraní I2C, měří v rozsahu 15 cm až 6 m (informace volitelně v cm, palcích nebo mikrosekundách) a šířka vyzařování je asi 55°.

Slouží tedy jako detektor vzdálených překážek před robotem s velkým rozsahem (nelze přesně určit směr k překážce). Poměrně velká minimální vzdálenost měření je dána tím, že na modulu je osazen pouze jeden ultrazvukový měnič, který potřebuje nějaký čas pro přepnutí z režimu vysílání ultrazvuku do režimu přijmu echa (ozvěny).

<table>
<thead>
<tr>
<th>Napájecí napětí</th>
<th>+5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozhraní</td>
<td>I2C slave nebo UART (9600 kb/s)</td>
</tr>
<tr>
<td>Jednotky</td>
<td>cm, palce, mikrosekundy</td>
</tr>
<tr>
<td>Rozsah měření</td>
<td>15 cm až 6 m</td>
</tr>
</tbody>
</table>

Tabulka 2: Vlastnosti senzoru SRF02 [DEV08]
2.7.5. **Elektronický kompas CMPS03**

Elektronický kompas CMPS03 [DEV08.1] je modul, který je pomocí senzorů magnetického pole Philips KMZ51 schopen měřit azimut s rozlišením 0,1° a přesností 3-4°. Tato informace je velice důležitá k určení směru pohybu robota pro jeho lokalizaci. Kompas disponuje rozhraním I2C [WIK09], které slouží jak ke čtení hodnot, tak ke kalibraci, která je důležitá (uspořádání magnetických siločar na různých místech Země je různé). Vzhledem k tomu, že magnetické pole se nachází i v okolí motorů a kovových součástí robota, musí být kompas umístěn na robotovi co možná nejdále od zdrojů rušení. Zároveň by měla být zajištěna vodorovná poloha víčka zemského povrchu. Senzor je běžně umístěn na stožár, který vyčnívá a je poměrně nevzhledný. Experimentem bylo zjištěno, že v robotovi stačí, když je kompas umístěn pod víkem plastové krabice. Kromě rozhraní I2C [WIK09] modul poskytuje i PWM výstup v úrovních TTL – délka výstupního pulsu odpovídá azimutu.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Napájecí napětí</td>
<td>+5 V</td>
</tr>
<tr>
<td>Rozhraní</td>
<td>I2C nebo PWM (pulzy)</td>
</tr>
<tr>
<td>Jednotky</td>
<td>Stupně</td>
</tr>
<tr>
<td>Rozlišení</td>
<td>0,1°</td>
</tr>
<tr>
<td>Odchylka</td>
<td>3 až 4°</td>
</tr>
</tbody>
</table>

Tabulka 3: Vlastnosti senzoru CMPS03 [DEV08.1]
2.7.6. Inkrementální snímač otáček (enkodér)

Inkrementální snímač otáček slouží k získání informace o vzdálenosti, kterou robot ujel. V anglosaské literatuře se používá pojm pro „incremental rotary encoder“, odtud se vžilo české označení „enkodér“. Informace o ujeté vzdálenosti je velice důležitá pro lokalizaci nebo pro jednoduchý algoritmus brzdy. Funguje na podobném principu jako tachometr u bicyklu, jen jako senzor je použit odrazové čidlo QRD114 [FAI05] (dvojice IR diody a IR tranzistor v jednom pouzdře). Odraz je detekován na vzdálenost menší než 6 mm. Na robotovi je vlepen do krytu převodovky a doplněn o jednoduchou desku plošných spojů obsahující konektor. Pod krytem rotuje ozubené kolo transmise, která přenáší pohyb ze zadní nápravy do přední. Na kolečku ze světlého plasty jsou prolisy, které jsem nabarvil matnou černou modelářskou barvou.

Díky diferenciálu, kterým je podvozek robota vybaven, je zajištěno, že ozubené kolečko kopíruje pohyb robota a informace o ujeté vzdálenosti není proklouznutím některého z kol zkreslena.

Výstupní signál ze senzoru je přiveden přes odporový dělič (realizovaný trimrem kvůli možnosti kalibrace) na vstupní pin mikrokontroléru ATMega8 [ATM07], zajišťujícího chod modulu řízení serv (popsán výše). Odtud je informace o ujeté vzdálenosti přenášena pomocí rozhraní I2C do řídícího počítače, který ji dále zpracovává.

Obrázek 19: Infračervený odrazový senzor QRD114
2.7.7. Ostatní moduly

Robot obsahuje další moduly, které už ale nejsou tak důležité. Patří mezi ně:

- **Bzučák** – pravidla soutěže Robotour nařizují, aby robot před překážkou zastavil a minimálně dal najevo, že čeká na její odstranění (například zvukovým signálem). Proto je na robotovi připevněn bzučák se zvukem podobným klaksonu auta, spínaný pomocí tranzistoru (velký proudový odběr bzučáku by integrovaný obvod zničil) modulem analogových senzorů připojeným ke sběrnici I2C.

- **Resetovací tlačítko** – slouží k rychlému resetování (restartu) použitých desek s mikrokontrolérem ATmega8 [ATM07]. Reset se provádí přivedením nízké úrovně napětí na pin PC6 (RESET). Je velice užitečné ve fázi testování, kdy je potřeba robota rychle zastavit a nevypnout řídící počítač.

- **Modul akcelerometru** – akcelerometr je zařízení měřící dynamické a statické zrychlení. Modul využívá modulu ACC7260 [SNA07] osazený tříosým akcelerometrem MMA7260. Pro měření slouží samostatná deska s jednočipem ATmega8 [ATM07] připojená na sběrnici I2C. Pro informaci o zrychlení zatím nemám využítí, proto je modul zmíněn pouze okrajově.
Konstrukce mobilního robota určeného pro pohyb ve venkovním prostředí

3. Programování

K programování jednočipů ATmega8 [ATM07] je použit jazyk C (kompilátor AVR-GCC) a knihovna AVR Libc [FRE08]. Ta umožňuje jednoduchý přístup k registrům mikrokontroléru.

Řídící počítač je programován jak v jazyce C (low-level programování – čtení senzorů, práce se sběrnicí – hlavním důvodem je rychlost), tak i ve skriptovacím jazyce Perl. Ten je použit jako prostředek k psaní algoritmů a jako lepidlo programů napsaných v jazyce C. Použití interpretovaného jazyka Perl je velice efektivní, pro změnu programu není nutné jej znovu kompilovat a dá se editovat „za běhu“.

K vizualizaci je použit jazyk PHP a knihovna GD, která se stará o kreslení obrázků. Vizualizace pohybu robota může vypadat například takto (Data byla naměřena pomocí elektronického kompasu a inkrementálního snímače otáček v zimních měsících v bytě, když robot opisoval ovál o poloměru asi 1 metr. Bohužel v pravém rohu místnosti stojí stůl s železnou konstrukcí, který se na přesnosti zřetelně podepsal):

Obrázek 20: Vizualizace pohybu robota
Konstrukce mobilního robota určeného pro pohyb ve venkovním prostředí

4. Závěr

Podařilo se sestrojit robota, který je díky dostatečnému množství senzorů a výkonnému řídícímu počítači schopen autonomní činnosti. Jeho stavbu jsem využil k získání zkušeností z elektrotechniky, číslicové techniky, mikroprocesorů a automatizace a hodlám jej dále vylepšovat (především po stránce algoritmů, které je nutné ladit ve venkovním prostředí) tak, aby byl schopen účasti v soutěži Robotour. Informace o postupu stavby a slepých uličkách průběžně zveřejňuji na webových stránkách http://knowhow.adamh.cz.

Obrázek 21: Pohled na hotového robota
4.1. Další vylepšení

Robot je stále ve vývoji a tak mám v plánu i další vylepšení, které například posílí jeho schopnosti orientace v terénu.

1) **GPS modul** – pro zjištění absolutní polohy robota v terénu. Použit bude buď mobilní telefon vybavený GPS přijímačem, nebo samostatný GPS modul, komunikující rozhraním UART.

2) **Kamera** – pro detekci okrajů cesty nebo křižovatek. Je opět několik možností, jak kameru zapojit:

 1. **USB webkamera** – tato možnost je spíše teoretická, jelikož operační systém Linux použitý v řídícím počítači je zkompilován s kernelem verze 2.4, který USB webkamery nepodporuje.

 2. **IP kamera** – kamera komunikující s řídícím počítačem pomocí rozhraní LAN. Jediným argumentem proti je poměrně vysoká cena IP kamery.

 3. **Kamerový modul** – například CMUcam⁵ nebo AVRcam⁶ – kamerové moduly obsahující výkonný mikrokontrolér ARM nebo jednoduchý mikrokontrolér AVR, které se starají o zpracování obrazu. S řídícím počítačem se propojuje nejčastěji rozhraním UART (sériový port).

 4. **Mobilní telefon** – mobilní telefon s kamerou a programem zpracujícím obraz. Vyzkoušen byl program v jazyce Java (J2ME) využívající rozhraní Mobile Media API [SUN09]. Tato metoda je v praxi bohužel nepoužitelná, protože rozhraní poskytuje přibližně jeden obrázek z fotoaparátu za jednu vteřinu, což je nedostatečné.

⁶ AVRcam – http://www.jrobot.net/Projects/AVRcam.html
4.1.1. Nová koncepce

Postupem času přijde řada na konstrukci novou s novým podvozkem i celým systémem řízení. Jako řídící systém bude pravděpodobně použit modul vlastní konstrukce – plastová krabička s LCD displejem a několika tlačítky, programovacím rozhraním JTAG nebo USB. Modul bude vybaven i rozhraním CAN, používaném v automobilovém průmyslu.

Sběrnice CAN s sebou oproti I2C nese řadu výhod, například větší spolehlivost a přenosovou rychlost. Díky tomu, že jde o sběrnici diferenciální (logická úroveň se vyhodnocuje z rozdílu potenciálů dvou vodičů), je možné datové kabely vést i kolem zdrojů rušení a je možné požít větší délku vodičů. Sběrnice je podobná standardu RS485, ze kterého se vyvinula, není však třeba přepínat směr komunikace a protokolem je zabráněno kolizím během komunikace. Celá koncepce je blíže popsána na webu.\footnote{Popis nové koncepce řízení – <http://knowhow.adamh.cz/RidiciSystem>}

\footnotetext[7]{Popis nové koncepce řízení – <http://knowhow.adamh.cz/RidiciSystem>}
Konstrukce mobilního robota určeného pro pohyb ve venkovním prostředí

5. Vysvětlení použitých zkratek a termínů
 - **USB** – Universal Serial Bus – rozhraní pro připojení periferií k počítači.
 - **LAN** – Local Area network – rozhraní pro propojení sítě počítačů.
 - **WLAN** – Wireless Local Area Network – rozhraní pro bezdrátové propojení sítě počítačů.
 - **CAN** – Controller Area Network – diferenciální průmyslová sběrnice využívaná hlavně v automobilovém průmyslu.
 - **JTAG** – Join Test Action Group – rozhraní používané pro ladění programu v mikrokontroléru.
 - **UART** – Universal Asynchronous Receiver/Transmitter – rozhraní pro sériovou komunikaci.
 - **PWM** – Pulse Width Modulation – pulzně šířková modulace – používá se například pro regulaci rychlosti.
 - **FTP** – File Transfer Protocol – protokol sloužící k nahrávání souborů na server.
 - **Router** – Zařízení sloužící pro propojení dvou nebo více počítačových sítí, elektronika poskytuje zajímavý výpočetní výkon.
 - **Linux** – svobodný operační systém, používaný jak v PC, tak i v routerech nebo mobilních telefonech.
 - **PDA** – Personal Digital Assistant – kapesní počítač.
 - **jednočip** – Jednočipový počítač. Jedná se o integrovaný obvod, ve kterém je kromě procesoru ukryta i paměť, oscilátor, ovládání vstupů/výstupů, komunikační rozhraní atd.
 - **LED** – Light Emitting Diode – svítivá dioda.
Konstrukce mobilního robota určeného pro pohyb ve venkovním prostředí

6. Seznam použité literatury

[CAR06] CARRICK, Micah. AVR Controlled GP2D120 Distance Sensor [online], 2006 [cit. 27. 02. 2009]. Dostupné na: http://www.micahcarrick.com/05-11-2006/avr-controlled-gp2d120-distance-sensor.html

[DEV08] DEVANTECH LTD (ROBOT ELECTRONICS). SRF02 Ultra Sonic Range Finder [online], 2008 [cit. 25. 02. 2009]. Dostupné na: http://www.robotelectronics.co.uk/htm/srf02tech.htm

[DEV08.1] DEVANTECH LTD (ROBOT ELECTRONICS). CMPS03 documentation [online], 2008 [cit. 25. 02. 2009]. Dostupné na: http://www.robotelectronics.co.uk/htm/cmps3tech.htm

[SUN09] SUN MICROSYSTEMS. Mobile Media API (MMAPI) [online], 2009 [cit. 05. 03. 2009]. Dostupné na: http://java.sun.com/products/mmapi/

